与从头开始的传统学习相比,知识蒸馏有时会使DNN实现卓越的性能。本文提供了一种新的观点,可以根据信息理论来解释知识蒸馏的成功,即量化在DNN的中间层中编码的知识点。为此,我们将DNN中的信号处理视为丢弃层的信息。知识点称为输入单元,其信息比其他输入单元所丢弃的信息要少得多。因此,我们根据知识点的量化提出了三个用于知识蒸馏的假设。 1. DNN从知识蒸馏中学习比从头开始学习的DNN学习更多的知识点。 2.知识蒸馏使DNN更有可能同时学习不同的知识点。相比之下,从头开始的DNN学习倾向于顺序编码各种知识点。 3.与从头开始学习的DNN学习通常更稳定地优化了从知识蒸馏中学习的DNN学习。为了验证上述假设,我们设计了具有前景对象注释的三种类型的指标,以分析DNN的功能表示,\ textit {i.e。}知识点的数量和质量,不同知识点的学习速度,以及优化方向的稳定性。在实验中,我们诊断出各种DNN的不同分类任务,即图像分类,3D点云分类,二进制情感分类和问题回答,这些问题验证了上述假设。
translated by 谷歌翻译
尽管已经提出了许多方法来增强对抗性扰动的可转移性,但这些方法是以启发式方式设计的,并且尚不清楚改善对抗性转移性的基本机制。本文总结了在统一视图中以十二个以前的可传递性提高方法共享的共同机制,即这些方法都减少了区域对抗性扰动之间的游戏理论相互作用。为此,我们专注于区域对抗扰动之间所有相互作用的攻击效用,我们首先发现并证明了对抗传递性与相互作用的攻击效用之间的负相关性。基于这一发现,我们从理论上证明并从经验上验证了十二种以前的可传递性提高方法均减少了区域对抗扰动之间的相互作用。更重要的是,我们将相互作用的减少视为增强对抗性转移性的基本原因。此外,我们设计了交互损失,以直接惩罚攻击过程中区域对抗扰动之间的相互作用。实验结果表明,相互作用损失显着提高了对抗扰动的转移性。
translated by 谷歌翻译
本文的目的是理论上分析具有relu层的分段线性DNN中编码的特征转换的复杂性。我们建议指标根据信息理论衡量转换的三种复杂性。我们进一步发现并证明了转换的复杂性和分离之间的密切相关性。根据提议的指标,我们分析了训练过程中转换复杂性变化的两个典型现象,并探索DNN复杂性的上限。所提出的指标也可以用作学习具有最小复杂性的DNN的损失,这也控制DNN的过度拟合水平并影响对抗性的鲁棒性,对抗性转移性和知识一致性。全面的比较研究为了解DNN提供了新的观点。
translated by 谷歌翻译
在本文中,我们在学习多层感知(MLPS)中发现了两相现象。即,在第一阶段,培训损失不会显着降低,但不同样本之间的特征的相似性不断增加,这伤害了特征多样性。我们在MLP的学习动态方面解释了这样的两阶段现象。此外,我们提出了两个归一化操作来消除两相现象,这避免了特征多样性的减少,并加快了培训过程。
translated by 谷歌翻译
本文探讨了深度神经网络(DNN)的特征表示的瓶颈,从DNN中编码的输入变量之间的相互作用的复杂性的角度来看。为此,我们专注于输入变量之间的多阶交互,其中顺序表示交互的复杂性。我们发现DNN更有可能编码过于简单的相互作用和过于复杂的相互作用,但通常无法学习中间复杂性的相互作用。这种现象被不同的DNN广泛共享,用于不同的任务。这种现象表明了DNN和人类之间的认知差距,我们称之为瓶颈。理论上,理论上证明了代表瓶颈的潜在原因。此外,我们提出了鼓励/惩罚特定复杂性的相互作用的损失,并分析不同复杂性相互作用的表示能力。
translated by 谷歌翻译
本文提出了分层和符号和或图形(AOG),客观地解释由训练有素的深层模型进行推理的内部逻辑。我们首先定义博弈论中解释器模型的客观性,我们开发了深层模型编码的逻辑和逻辑的严格表示。AOG解释者的客观性和可信度在理论上和实验验证。此外,我们提出了几种技术来提升解释的简明。
translated by 谷歌翻译
在本文中,我们评估了用于3D点云处理的深神经网络(DNN)中编码的知识表示的质量。我们提出了一种方法来解开整体模型脆弱性进入旋转,翻译,尺度和局部3D结构的敏感性。此外,我们还提出了指标来评估编码3D结构的空间平滑度,以及DNN的表示复杂性。基于此类分析,实验将揭示经典DNN的表现问题,并解释对抗性培训的效用。
translated by 谷歌翻译
本文提供了统一的观点来解释不同的对抗攻击和防御方法,\ emph {i.e.} DNN的输入变量之间的多阶交互的视图。根据多阶互动,我们发现对抗性攻击主要影响愚弄DNN的高阶相互作用。此外,我们发现前列培训的DNN的鲁棒性来自特定于类别的低阶交互。我们的研究结果提供了统一对抗的扰动和鲁棒性的潜在方法,可以以原则方式解释现有的防御方法。此外,我们的调查结果还修订了先前的不准确了解对抗普遍学习特征的偏差。
translated by 谷歌翻译
本文提出了一种可视化DNN编码的中间层视觉模式的辨别力的方法。具体而言,我们可视化(1)DNN在训练过程中如何逐渐学习各个中间层中的区域视觉模式,(2)DNN使用低层中的非辨别模式的效果来构建中/高层中的剥离图案通过前向传播。基于我们的可视化方法,我们可以量化DNN学习的知识点(即,判别视觉模式的数量)来评估DNN的表示能力。此外,该方法还提供了新的洞察现有的深度学习技术的信号处理行为,例如对抗攻击和知识蒸馏。
translated by 谷歌翻译
先进的体积成像方法和遗传编码的活性指标已允许在\ textit {caenorhabditis elegans}中对全脑活性进行全面表征。然而,线虫神经系统的恒定运动和变形对行为动物中的密集填充神经元的一致构成了巨大的挑战。在这里,我们提出了一种级联解决方案,用于在自由移动的\ textit {c中长期和快速识别头发神经节神经元。秀丽隐杆线}。首先,通过深度学习算法检测到来自荧光图像的潜在神经元区。第二,二维神经元区域被融合到三维神经元实体中。第三,通过利用神经元和神经元之间的相对位置信息的神经元密度分布,多级人工神经网络将工程的神经元向量转化为数字神经元身份。有了少量的培训样品,我们的自下而上的方法能够处理每一卷 - $ 1024 \ times 1024 \ times 18 $ in Voxels-少于1秒钟,并获得了$ 91 \%\%$ $ $ 91 \%的神经元检测及以上的准确性$ 80 \%$ in Neuronal跟踪在长时间的视频录制中。我们的工作代表了迈向快速和完全自动化算法的一步,用于解码自然主义行为的全部大脑活动。
translated by 谷歌翻译